Вычислительные Машины И Труднорешаемые Задачи

Posted : admin On 04.10.2019
  1. Первые Вычислительные Машины
  2. Вычислительные Машины И Труднорешаемые Задачи Купить
  3. Вычислительные Машины И Труднорешаемые Задачи

Чего не может компьютер, или труднорешаемые задачи Машина должна работать, человек думать. Принцип IBM О задачах и алгоритмах В среде математиков известна такая притча. В давние времена, когда никто и понятия не имел о компьютерах и их возможностях, один индийский мудрец оказал большую услугу своему правителю. Правитель решил отблагодарить его и предложил ему самому выбрать награду.

На что мудрец ответил, что пожелал бы видеть шахматную доску, на каждой клетке которой были бы разложены зернышки пшена в следующем порядке: на первой 2, на второй 2х2=4, на третьей 2х2х2=8, на четвертой 24=16, и так далее на всех клетках. Сначала правитель обрадовался легкости расплаты. Но вот выполнить обещание не смог, так как он и его слуги вряд ли когда-нибудь смогли бы отсчитать 264 зерен на последнюю клетку, что соответствует примерно 18,4 миллиардам миллиардов (!). Задача, сформулированная в этой притче, относится к разряду тех, при решении которых самый современный компьютер бессилен так же, как в древности слуги правителя. Зная производительность современных ЭВМ, не представляет труда убедиться в том, что пользователю не хватит всей его жизни для отсчета зерен, но в данном случае это даже не самое главное. Суть проблемы в том, что достаточно незначительно изменить входные данные, чтобы перейти от решаемой задачи к нерешаемой.

Каждый человек в зависимости от своих счетных способностей может определить, начиная с какой клетки (пятнадцатой или допустим, восемнадцатой) продолжать отсчитывать зерна для него не имеет смысла. То же самое можно определить и для ЭВМ, для которой подобные характеристики написаны в технической документации. В случаях, когда незначительное увеличение входных данных задачи ведет к возрастанию количества повторяющихся действий в степенной зависимости, то специалисты по алгоритмизации могут сказать, что мы имеем дело с неполиномиальным алгоритмом, т.е. Количество операций возрастает в зависимости от числа входов по закону, близкому к экспоненте ех (е≈2,72; другое название экспоненциальные алгоритмы). Подобные алгоритмы решения имеет чрезвычайно большой круг задач, особенно комбинаторных проблем, связанных с нахожденим сочетаний, перестановок, размещений каких-либо объектов. Всегда есть соблазн многие задачи решать исчерпыванием, т.е. Проверкой всех возможных комбинаций.

Первые вычислительные машины

Труднорешаемые задачи. (цифровая вычислительная машина). Цепи и машины. Пособие - М.: ВМК МГУ, 2006. Задачи на составление алгоритмов в виде машины.

Труднорешаемые

Например, так решается задача безошибочной игры в шахматы. Эта задача относится к классическим нерешаемым! Ни одна современная ЭВМ не сможет сгенерировать все простые перестановки более чем 12 разных предметов (более 479 млн.), не говоря уже о всех возможных раскладках колоды из 36 игральных карт. Поэтому труднорешаемой (нерешаемой) задачей можно называть такую задачу, для которой не существует эффективного алгоритма решения. Экспоненциальные алгоритмы решений, в том числе и исчерпывающие, абсолютно неэффективны для случаев, когда входные данные меняются в достаточно широком диапазоне значений, следовательно, в общем случае считать их эффективными нельзя. Эффективный алгоритм имеет не настолько резко возрастающую зависимость количества вычислений от входных данных, например ограниченно полиномиальную, т.е х находится в основании, а не в показателе степени.

Такие алгоритмы называются полиномиальными, и, как правило, если задача имеет полиномиальный алгоритм решения, то она может быть решена на ЭВМ с большой эффективностью. К ним можно отнести задачи сортировки данных, многие задачи математического программирования и т.п. Чего же не может и, скорее всего, никогда не сможет компьютер в его современном (цифровая вычислительная машина) понимании? Ответ очевиден: выполнить решение полностью аналитически. Постановка задачи заключается в замене аналитического решения численным алгоритмом, который итеративно (т.е. Циклически повторяя операции) или рекурсивно (вызывая процедуру расчета из самой себя) выполняет операции, шаг за шагом приближаясь к решению.

Если число этих операций возрастает, время выполнения, а возможно, и расход других ресурсов (например, ограниченной машинной памяти), также возрастает, стремясь к бесконечности. Задачи, своими алгоритмами решения создающие предпосылки для резкого возрастания использования ресурсов, в общем виде не могут быть решены на цифровых вычислительных машинах, т.к. Ресурсы всегда ограничены. Эвристические алгоритмы Другое возможное решение описанной проблемы в написании численных алгоритмов, моделирующих технологические особенности творческой деятельности и сам подход к аналитическому решению.

Методы, используемые в поисках открытия нового, основанные на опыте решения родственных задач в условиях выбора вариантов, называются эвристическими. На основе таких методов и выполняется машинная игра в шахматы.

В эвристике шахматы рассматриваются как лабиринт, где каждая позиция представляет собой площадку лабиринта. Почему же именно такая модель? В психологии мышления существует т.н. Лабиринтная гипотеза, теоретически представляющая решение творческой задачи как поиск пути в лабиринте, ведущего от начальной площадки к конечной. Конечно, можно проверить все возможные пути, но располагает ли временем попавший в лабиринт? Совершенно нереально исчерпывание шахматного лабиринта из 2х10116 площадок!

Первые Вычислительные Машины

Вычислительные

Занимаясь поиском ответа, человек пользуется другими способами, чтобы сократить путь к решению. Возможно сокращение числа вариантовs.

Вычислительные Машины И Труднорешаемые Задачи Купить

Вычислительные машины и труднорешаемые задачи Гэри М., Д. Джонсон Цитата: Монография американских ученых, посвященная вопросам сложности решения комбинаторных задач, возникающих в дискретной оптимизации, математическом программировании, алгебре, теории чисел, теории автоматов, математической логике, теории множеств, теории графов и т.п.

Вычислительные Машины И Труднорешаемые Задачи

Книга отличается строгим и систематическим изложением теории, в приложении содержится более 300 труднорешаемых задач из различных разделов математики. Для математиков-прикладников, аспирантов и студентов университетов.